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Abstract. A study of the cumulative sums of the 1\Tbius function on the Atlas 
Computer of the Science Research Council has revealed certain 'statistical prop- 
erties which lead the authors to make a number of conjectures. One of these is 
that any conjecture of the Mertens type, viz. 

N 

IM(N) I = E 4(n) < k(-\IN) 
n=1 

where k is any positive constant, is false, and indeed the authors conjecture that 

Lim sup {M(x)(x log log x)-112} = V (12)/r . 

The Riemann zeta function is defined for R(s) > 1 by the series c(s) = 

E=li nB-, and the definition is completed by analytic continuation. Riemann's 
hypothesis is that the "complex zeros" all occur where R(s) = 2. It has now been 
verified for the first 2,000,000 complex zeros (Rosser and Schoenfeld, [8]), but this 
is not a very good reason for believing that the hypothesis is true. For in the theory 
of the zeta function, and in the closely allied theory of the distribution of prime 
numbers, the iterated logarithm log log x is often involved in asymptotic formulae,. 
and this function increases extremely slowly. The first zero off the line R(s) = 2 

if there is one, might have an imaginary part whose iterated logarithm is, say as 
large as 10, and, if so, it might never be practicable to find this zero by calculation. 
The plausibility of this argument is increased when we recall the refutation by 
Littlewood [5] of the conjecture that 7r(x), the number of primes less than x, is, 
always less than the logarithmic integral, li(x), a conjecture that is presumably- 
true at least as far as x = 109 (see Ingham [4, p. 7]). It is possible that Littlewood 
had this kind of argument in mind when he said (Littlewood [6]), "In the spirit of 
this anthology (an anthology of partly baked ideas) I should also record my feel- 
ing that there is no imaginable reason why it (the Riemann hypothesis) should be 
true." 

The aim of the present note is to suggest a "reason" for believing Riemann's. 
hypothesis. 

The M6bius function is defined by ,u(n) = (_)k if the positive integer n is the 
product of k different primes, ,u(1) = 1, and ,u(n) = 0 if n has any repeated factor. 
It is known (see, for example, Titchmarsh [9, p. 315]) that a necessary and suf-- 
ficient condition for the truth of the Riemann hypothesis is that M(x) - O(x' 12+e),* 

for all e > 0, where M(x) = ,u(n) (n ? x). The condition M(x) - O(x1 2+E) 

would be true if the M6bius sequence {,u(n) } were a random sequence, taking the 
values -1, 0, and 1, with specified probabilities, those of -1 and 1 being equal.- 
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More generally, if we first select a subsequence from {,u(n) I by striking out all 
the terms for which ,u(n) = 0, and if this subsequence were 'equiprobably random,' 
i.e. if the value -1 and 1 each had (conditional) probability -1, then the condition 
M(x) = O(x'12+e) would still be true. Of course a deterministic sequence can at 
best be 'pseudorandom' in the usual incompletely defined sense in which the term 
is used, and of course all our probability arguments are put forward in a purely 
heuristic spirit without any claim that they are mathematical proofs. 

As a matter of fact there are a priori reasons, that is without looking at the 
numerical support, for believing the following conjecture: 

Conjecture A. The sums of ,u(n) in blocks of length N, where N is large, have 
asymptotically a normal distribution with mean zero and variance 6N/72. 

A priori reasons for believing this conjecture. Note first that ,u(n) = 0 when n is 
a multiple of 4, so there are zeros in the sequence {,u(n) } at regular intervals of 4, 
and similarly at regular intervals of 9 and so on. So, if we write vP for the number 
of values of n (in a block of length N) for which ,u(n) i, we would expect vo to 
be very close to its expected value 

N - N(1 - 2-2)(1 - 3-2)(1 5-2) ... = N(1 - 6r-2) . 

The numerical evidence for this statement is given in Tables 2 and 3 in the appendix. 
Now if n is large and known to be square-free it is likely to have a fair number 

of factors, and therefore by the theory of the roulette wheel (with two sectors in- 
stead of 37 or 38) the probabilities that the number of factors is odd or even are 
nearly equal. Thus the probability that ,u(n) = 1 (or -1) is near to 37r-2 and tends 
to this value when the range in which n is known to lie tends to infinity. Hence 
the expectation of ,u(n) is 0. 

The probability distribution of vj, conditional on a knowledge of vo, is binomial 
with mean 2 (N - vo) and variance 4 (N - vo). Allowing for the near-constancy of 
vo, the unconditional distribution of vi would be expected to be binomial with mean 
3N7r-2 and variance 3N7r-2/2. As a matter of fact the variance does not depend on 
the near-constancy of vo since 

var (v1 - v-i) = E(V1-V_1)2 

= E {E[(vl - v_1)2Ivo] } 
= E(N - vo) = 6N7r-2. 

We have here assumed that, given vo, v1 has a 'heads-and-tails' binomial distribu- 
tion. Its sample size is, of course, N - vo. 

This completes our a priori argument for believing Conjecture A, and even if 
Conjecture A is only approximately true it is so much stronger than the condition 
M(x) = O(xI'2+e) that we feel its approximate truth would still support that 
condition. 

We now describe the numerical test of Conjecture A, which was performed 
with N = 1000. 

We computed M(lOOOr + 1000) - M(lOOOr) (where we write M(O) = 0) for 
r = 0(1)49,999 on the Chilton Atlas (as a "background" job) but the values 
r = 34,000(1)34,999 were lost owing to a machine fault. Column (ii) of Table 1 
gives the frequencies with which 
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M(lOOOr + 1000) - M(lOOOr) 

lies in the ranges given by column (i). The "expected values" of these frequencies, 
based on Conjecture A, are listed in column (iii). For example, 

49 fl0.6 

7688 = V2 exp (- '2X2/C )dx, 

where c2 = 6000/7r2. It will be seen that the fit is extremely good, in fact x2 = 24.2 
with 22 degrees of freedom. Thus Conjecture A is not merely to be expected a 
priori, by mathematical common sense, but it is well supported by the numerical 
data. As we said before, we believe therefore that there is a good "reason" for 
believing the Riemann hypothesis, apart from the calculation of the first 2,000,000 
zeros. 

TABLE 1. 

Frequencies of the values of ,u(n) (10OOr < n ? 1000(r + 1)), 
for 49000 values of r. 

(i (ii) (iii) 
Ra,n,,qe Frequencies Expectations 

-lOlto -110 0 1.0 
- 91 to -100 1 4.9 
-81 to - 90 16 20.6 
- 71to- 80 63 76.5 
-61 to - 70 248 240 
- 1 to- 60 635 652- 
-41 to - 50 1491 1465 
- 31 to - 40 2797 2832 
- 21 to - 30 4711 4645 
-11 to - 20 6604 6478 
- 1 to - 10 7513 7688 

0 793 794 
1 to 10 7779 7688 

11 to 20 6450 6478 
21 to 30 4601 4645 
31 to 40 2842 2832 
41 to 50 1477 1465 
51 to 60 651 652 
61 to 70 216 240 
71to 80 88 76.5 
81 to 90 16 20.6 
91to 100 7 4.9 

101 to 110 1 1.0 
49000 49000.0 

Although {,u(n) } is not a random sequence it is tempting to apply the law of 
the iterated logarithm (for example, Feller [1, p. 157]) to the subsequence obtainedt 
by deleting the values of n for which i(n) = 0. In this manner we generate a. 
second conjecture, which, however, is less probable than Conjecture A and for 
which it is difficult to obtain numerical support. But it is of some interest to con- 
sider it. 



860 I. J. GOOD AND R. F. CHURCHHOUSE 

Conjecture B. 

limsup {M(x)(xloglogx)- /2J = V (12)/7r. 

Conjecture B contradicts Mertens's conjecture that IM(x) I < x"12, even in the 
extended form IM(x) I< Cx"12 for any constant C. When C = 1 this modification 
of Mertens's conjecture was refuted numerically by Neubauer [7]: a breakdown 
occurred, for example at x = 7.76 X 109. Also a conjecture of P6lya's, closely 
related to that of Mertens, was refuted by Haselgrove [3], who believed further 
that his method could be applied, with 1000 times as much calculation, to disprove 
Mertens's conjecture. In the light of this evidence, Mertens's conjecture is im- 
probable, and our Conjecture B is somewhat supported by its inconsistency with it. 

Appendix. Distribution of Po for N = 1,000,000 

In Table 2 we give the values of Po, i.e. the number of cases of ,u(n) = 0, in the 
first, second, . . ., 33rd block of length a million. We stopped at this point owing 
to the machine fault previously mentioned: a single supervisor fault caused the 
output for Table 1 to be lost at the 35th million and for Table 2 at the 34th million. 

TABLE 2 

Million PO Million Po 

1 392,074 18 392,088 
2 392,049 19 392,039 
3 392,104 20 392,037 
4 392,037 21 392,072 
5 392,103 22 392,084 
6 392,076 23 392,096 
7 392,053 24 392,047 
8 392,101 25 392,096 
9 392,061 26 392,071 

10 392,051 27 392,071 
11 392,073 28 392,065 
12 392,078 29 392,079 
13 392,073 30 392,065 
14 392,095 31 392,083 
15 392,083 32 392,077 
16 392,093 33 392,076 
17 392,057 

Using the 33 values of Po given in Table 2, the estimated standard deviation is 
only 19.1. (The average number of zeros in each block of a million is very nearly 
392,073.) This suggests that nearly always Po is nearly constant in the sense that, 
for large N, the standard deviation of Po is o( -V N), which for possible future ref- 
erence we call Conjecture C. The total expected number of zeros of the sequence 
{,i(n)} in the first 33,000,000 is 33,000,000(1 - 6r-2) = 12,938,405.6 and the 
observed number is 12,938,407, an astonishingly close fit, better than we deserved. 

The values of Po for a few further values of N are shown in Table 3. 
On the basis of this table we might even strengthen Conjecture C to (Conjecture 
D) 'the variance of Po for large N is a constant.' 
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TABLE 3 

N PO E(Vo) - E(0o) 

25,000,000 9,801,820 9,801,822.5 - 2.5 
50,000,000 19,603,656 19,603,645 +11 
75,000,000 29,405,440 29,405,467 -27 

100,000,000 39,207,306 39,207,290 +16 

The conjecture of the near constancy of Po in each block of length N must be 
interpreted in an average ('probabilistic') sense, whether or not it is expressed in 
the form of Conjecture C. It would not be correct to assume that Po is always close 
to its expected value; in fact it will sometimes though very rarely happen that 
vO = N. This will happen, for example, in the block (M + 1, M + 2, *. ., M + N) 
if simultaneously M-- -1 (mod 4), M- -2 (mod 9), M -3 (mod 25), 
**,M _-N (mod PN2), where PN is the Nth prime. These congruences can be 
solved by Sun-Tsu's theorem (see, for example, Good [2, p. 759]). The value of 
M so obtained will be something like N2N. Thus the M6bius sequence {,u(n) } con- 
tains arbitrarily long runs of zeros, but these long runs presumably occur extremely 
rarely. 
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